Acoular 24.07 documentation

Show basic filtering capabilities.

«  IO and signal processing examples   ::   IO and signal processing examples   ::   Cross-spectral matrix import  »

Show basic filtering capabilities.

Demonstrates band pass filter characteristics and shows

example filter
import acoular as ac
import matplotlib.pyplot as plt
import numpy as np

ac.config.global_caching = 'none'
numsamples = 51200 * 10
n1 = ac.WNoiseGenerator(sample_freq=51200, numsamples=numsamples, seed=1)
m1 = ac.MicGeom(mpos_tot=[[1], [1], [1]])
p1 = ac.PointSource(signal=n1, mics=m1)
f1 = ac.FiltFiltOctave(source=p1, band=10, fraction='Octave')
hs = 0.0
res0 = 0.0
for i in np.arange(2.1, 3.0, 0.3):
    # f1.order = 2
    f1.band = 10**i
    res = (ac.tools.return_result(f1) ** 2).sum()
    res0 += res
    ps = ac.PowerSpectra(time_data=f1, block_size=8192)
    # print(res / numsamples, ps.csm[:, 0, 0].real.sum())
    x = ps.fftfreq()
    y = 10 * np.log10(ps.csm[:, 0, 0].real)
    plt.semilogx(x, y)
    hs = hs + ps.csm[:, 0, 0].real
y = 10 * np.log10(abs(hs))
plt.semilogx(x, y)
ps = ac.PowerSpectra(time_data=p1, block_size=8192)
x = ps.fftfreq()
y = 10 * np.log10(ps.csm[:, 0, 0].real)
plt.semilogx(x, y)
plt.ylim(-45, -35)
plt.xlim(70, 1400)
plt.show()

Total running time of the script: (0 minutes 1.232 seconds)

Gallery generated by Sphinx-Gallery

«  IO and signal processing examples   ::   IO and signal processing examples   ::   Cross-spectral matrix import  »