acoular.sources.spherical_hn1¶
- acoular.sources.spherical_hn1(n, z)¶
Compute the spherical Hankel function of the first kind.
The spherical Hankel function of the first kind, \(h_n^{(1)}(z)\), is defined as
\[h_n^{(1)}(z) = j_n(z) + i \cdot y_n(z)\]with the complex unit \(i\), the spherical Bessel function of the first kind as
\[j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z),\]and the spherical Bessel function of the second kind as
\[y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n + 1/2}(z),\]where \(Y_n\) is the Bessel function of the second kind.
- Parameters:
- Returns:
- complex or
numpy.ndarray
Value of the spherical Hankel function of the first kind for the given order
n
and argumentz
. Ifz
is array-like, an array of the same shape is returned.
- complex or
See also
scipy.special.spherical_jn()
Computes the spherical Bessel function of the first kind.
scipy.special.spherical_yn()
Computes the spherical Bessel function of the second kind.
Notes
The function relies on
scipy.special.spherical_jn()
for the spherical Bessel function of the first kind andscipy.special.spherical_yn()
for the spherical Bessel function of the second kind.The input
n
must be a non-negative integer; otherwise, the behavior is undefined.
Examples
>>> import acoular as ac >>> >>> ac.sources.spherical_hn1(0, 1.0) np.complex128(0.8414709848078965-0.5403023058681398j) >>> ac.sources.spherical_hn1(1, [1.0, 2.0]) array([0.30116868-1.38177329j, 0.43539777-0.350612j ])